Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Remote Sensing ; 14(8):1768, 2022.
Article in English | MDPI | ID: covidwho-1776323

ABSTRACT

Central India faces a freshwater shortage due to its diverse terrain, sudden change in precipitation patterns and crystalline rock covered subsurface. Here, we investigate the patterns in terrestrial water storage anomaly (TWSA) over the last two decades, and also study the influence of the COVID-19 lockdown on TWSA in the drought-prone regions of central India, mostly covering the Vidarbha region of the Indian state of Maharashtra. The Vidarbha region is arguably the most drought-affected region in terms of farmer suicides due to crop failure. Our forecast data using multiple statistical approaches show a net TWSA rise in the order of 3.65 to 19.32 km3 in the study area in May 2020. A short-term rise in TWSA in April–May of 2020 is associated with lockdown influenced human activity reduction. A long-term rise in TWSA has been observed in the study region in recent years;the rising TWSA trend is not directly associated with precipitation patterns, rather it may be attributed to the implementation of water management policies.

2.
Int J Environ Res Public Health ; 18(6)2021 03 10.
Article in English | MEDLINE | ID: covidwho-1125544

ABSTRACT

The 2020 COVID-19 pandemic has not only resulted in immense loss of human life, but it also rampaged across the global economy and socio-cultural structure. Worldwide, countries imposed stringent mass quarantine and lockdowns to curb the transmission of the pathogen. While the efficacy of such lockdown is debatable, several reports suggest that the reduced human activities provided an inadvertent benefit by briefly improving air and water quality. India observed a 68-days long, nation-wide, stringent lockdown between 24 March and 31 May 2020. Here, we delineate the impact of the lockdown on groundwater and river sourced drinking water sustainability in the arsenic polluted Ganges river basin of India, which is regarded as one of the largest and most polluted river basins in the world. Using groundwater arsenic measurements from drinking water wells and water quality data from river monitoring stations, we have studied ~700 km stretches of the middle and lower reaches of the As (arsenic)-polluted parts of the river for pre-lockdown (January-March 2020), syn-lockdown (April-May), and post-lockdown periods (June-July). We provide the extent of As pollution-free groundwater vis-à-vis river water and examine alleviation from lockdown as an opportunity for sustainable drinking water sources. The overall decrease of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations and increase of pH suggests a general improvement in Ganges water quality during the lockdown in contrast to pre-and-post lockdown periods, potentially caused by reduced effluent. We also demonstrate that land use (agricultural/industrial) and land cover (urban-periurban/rural) in the vicinity of the river reaches seems to have a strong influence on river pollutants. The observations provide a cautious optimistic scenario for potentially developing sustainable drinking water sources in the arsenic-affected Ganges river basin in the future by using these observations as the basis of proper scientifically prudent, spatially adaptive strategies, and technological interventions.


Subject(s)
Arsenic , COVID-19 , Drinking Water , Water Pollutants, Chemical , Communicable Disease Control , Environmental Monitoring , Humans , India , Pandemics , Rivers , SARS-CoV-2 , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL